Research Report on Virginia Apple Objective Count Surveys

by
Tyler R. Sturdevant

Research and Development Branch
 Standards and Research Divisjon
 Statistical Reporting Service

I. Introduction

II. Background 19
III. Field Procedures
(t,
A. Chronology
: :
B. Tree Selection
C. Count Survey

1. Count limb selection procedure
2. Position on limb where measurement taken
3% Combining of small limbs to make desired sample CSA
3. Tdentification of terminal limb
5.: Counting technique, forecast and harvest
J. Size Growth Study
\therefore 1. \because Tag limb selection procedure
4. Apple selection and numbering
5. Apple measuring and data recording
\#. Harvest Weight Survey
1.: Tag limb apple weights

2 Count limb apple weights
3. Tree harvest apple weights
F. Orchard Production Report
IV. Analysis of Data
A. Description of Forecast Model, Sample Size Necessary
B. Projection of Number of Apples Available at Harvest
C. Estimation of Fruit Droppage and Harvest Loss
D. Projection of Harvest Weight
E. Size Distribution of Harvest

V. Summary Tables Relating to Analysis of Data

A. Table 2a, 1963-64 Count Limb Rancom Paths, Cross Sectional
B. Table 2 b , 1965 Count Limb Selection, Random Paths, Cross Sectional
C. Table 3, Derivation of Harvest Counts of Apples, Sample Trees 1963, 1964, 1965
D. Table 4a, Expanded Counts, Derived Harvest Counts, by Tree 1963,1964:
E. Table 4b, Expanded Counts, Derived Harvest Counts, by Tree 1965
F. Table 4c, Cross Sectional Areas of Sample Limbs with Associated Counts and Weights of Apples, 1963-1965
G. Table 5, Number of Apples Measured by Survey Date and Tree 1963, 1964, 1965
H. Table 6a, Va. Appie Counts Survey, 1963
I. Table 6b, Va. Apple Counts Survey, (Summary), 1964
J. Table 6c, Va. Apple Counts Survey, (Summary), 1965
K. Table 7a, Size Distribution of Apples, Diameter for each Survey Date, 1963
L. Table 7b, Size Distribution of Apples, Diameters for each Survey Date, 1964
M. Table 7c, Size Distribution of Diameters for each Survey Date, 1965
N. Table 8a, Apples Harvested per 1" CSA for each tree, 1963
0. Table 8b, Apples Harvested per 1" CSA for each tree, 1964
P. Table 8c, Apples Harvested per 1" CSA for each tree, 1965
Q. Table 9a, Average Weight per apple (Tag Limb) by Diameter Class by tree, 1963
R. Table 9 b , Average Weight per apple (Tag Limb) by Diameter Class by tree, 1964
S. Table 9c, Average Weight per apple (Tag Limb) by Diameter Class by tree, 1965
T. Table 10a, Calculation of weighed average weight per apple, by tree 1963
U. Table 10b, Calculation of weighed average weight per apple, by tree 1964
V. Table 10c, Calculation of weighed average weight per apple, by tree 1965
W. Table 11, Comparison of Expansions of Count Limbs Weights, Tree Production Weights, and Actual Production, 1963, 1964, 1965
X. Chart I, Increase in apple diameters by days after full bloom
Y. Chart II, Distribution of Diameters on July 1 by years
Z. Chart III, Distribution of Diameters at Harvest by years

AA. Chart IV, Predicted harvest distribution of diameter based on diameters and set of fruit per 1" of CSA on July I
VI. Conclusion

Report on Virginia Apple Objective Counts Survey

I. Introduction

The apple project was conducted for three seasons, 1963 through 1965, within a commercigl orctard in northern Virginia. The purpose was to develop objective yield procedures by periodic counts and measurements of apples on sample trees. This project was undertaken jointly by the Research and Development Branch of the Standards and Research Dvision and the Virginlia' State Office of the Field Operations Division, both of the Statistical Reporting Service, USDA.

II. Background

II. Background $\because \therefore$:

Before describing field procedures and analysis of data, it is helpful to explore the thinking behind the chofice of the methods employed in the survey.

First of all, juist what is to be estimated, and to what point in the seasoin? Primarily, the objective of the survey is to be able to preaict the number of bushels of apples to be harvested per tree as early in the sedson as possible. A supplementary objective is to be able to project size distribution of apples at harvest time as early in the season as possible.
Apple flower buds are initidted during the season prior to their opening. Thus it is possible to get some chue to next year's production potential before the current crop is harvested. Since environmental factors affect fruit bud development, however, there is a great deal of uncertainty at that point. For example, intensity and duration of light affect the differentiation of apple fruit buds:
Studies have been made concerning the relquidnship of the number of blossoms and the yleld of apples. 1 While there is significant correlation between the profusion of blossoms on a tree and the harvest yield, there is still too much uncertainty concerning pollination, damaging freezing temperatures, June droppage, and thinning to justify a major effort at this point in the season.

In Northern Virginia; by July 1 the apples that remain on the tree undergo little droppage from then until harvest. Consequentiy; as soon as the June drop has occurred, suffidient stability has been achieved to provide a basis for projecting apples tollbe harvested and an indidātion of harvestrize distribution. Subsequentiy, during the growing seeason, periodie measures of growth dan be made to "zeforin" growth rates.

The number of bushels to be harwested can be projected from July 1 data by estimating (1) number of apples on trees at July $1 ;$ (2) expected fruit droppage at harvest, (3) expected harvest' size of fruit, and (4) the expected proportion of fruit reaching maturity but not harvested.

[^0]Various methods are available for estimating the number of apples on trees on July l. A complete count of fruit on a tree is extremely time consuming, tedious, and prone to errors. An unbiased and consistent method is to sample terminal branches with probabilities proportional to the cross sectional area of the branch, since a correlation exists between the size of a branch and the number of fruit on a branch. This method for selecting terminal branches is described by R. J. Jessen. 2 This involves a random path within the sample tree. Another sampling technique that is sometimes used is the sector approach in which fruit is counted within a sample sector of the tree. The probabilities of selection are proportional to the size of sector: Defining sector boundaries and accurately counting fruit within sectors are difficulties encountered with this method, although its estimates are also unbiased and consistant. The method used in this study was to chose one random path in each sample tree. For efficient sample design, estimates of variances (1) between branches within tree, (2) between trees within orchards, and (3) between orchards within state should be available as well as cost estimates for each stage of cluster sampling. In addition, samples would ordinarily need to be allocated by varieties or varietal types.

Rate of fruit droppage after the June drop until harvest is relatively stable from year to year. The droppage rate is affected by (I) extreme weather, including temperature extremes and high winds, (2) animal and insect pests and desease, (3) cultural practices such as thinning, and (4) numbers of fruit on trees. Of these factors, the first three are difficult to predict but not considered as major variables over large regions. The latter factor should be considered in predicting normal droppage since it is obvious that the larger the number of fruit on trees, the more fruit there is to drop.

It has been observed that the greater the leaf area per fruit, the greater the total size of fruit, although the relationship is not directly proportional. $3 /$ Since leaf area on a branch is also highly correlated with the cross sectional area of the branch, the number of apples per one square inch cross sectional area provides an indication of leaf area per fruit. Studies of the relation ship between fruit sizes to temperature and rainfall have not shown a sugnificant relationship. Batjer found highly significant correlation coefficients between the diameter sizes of Winesaps at various periods after full bloom with harvest diameter sizes for the seasons 1949-52 as follows:

2/ "Determining the Fruit Count on a Tree by Randomized Branch Sampling", R. J. Jessen, Biometrics, Vol. II, No. 1, March 1955, p. 99-109

3/ "Relation of Roliage to Fruit Size and Quality in Apples and Pears", Magness and all, State College of Washington Experimental Station, February, 1931.

4/ "Predicting Harvest Size of Apples at Different Times During the Growing Season", Batjer et al, Wevatche, Washington.

	No. Orchards	35 days		--continued		
Year	-5	.85		.88	75 days	

It can be observed that in each year correlation coefficients become higher as the season progresses and that variations between years decrease. July 1 survey data corresponds most nearly to the 55 days after full bloom observations, ranging from 50 days to 63 days for 1963-1965 for the test orchard. These observations indicated that while an estimation of harvest size distribution is obtainable from July 1 apple size measurements, August 1 measurements are much more reliable indicators. To convert number and sizes of apples to bushels is relatively easy since there is an inverse and fairly consistent relationship between harvest diameters and the number of apples per bushel.

The expected proportion of fruit reaching maturity but not utilized called harvest loss, depends primarily upon two factors: (1) fruit left in orchards and (2) fruit harvested but not utilized. The latter is not usually considered much of a factor because of the diverse pattern of utilization and extent of salvage available. The amount of fruit left in orchards is of more importance and of a complex nature. It is a function of (1) number of apples reaching maturity (2) degree of maturity at harvest (3) availability and quality of harvest labor, and (4) returns of apples for by-products. Maturity of apples at harvest can be affected by extending the harvest period past the optimum stage due to a scarce labor supply: As apples become fully mature, they tend to be attached less firmiy to the tree so that picking ladders cause heavier fruit fall. With less experienced crews, more fruit is knocked to the ground during harvest and trees are picked less clearly. Whether a grower will pick up ground falls depends upon the volume of fruit on the ground and the availability of labor. Returns of apples for byproducts do not normally fluctuate widely from one year to the next, but do provide the grower guidelines as to the feasibility of picking up ground falls. Harvest losses would normally be objectively projected as a function of apples on tree on July 1 with other factors being considered equal.
III. Field Procedure

Chronology Three types of observations were made: (1) a count of apples on sample branches, (2) periodic diameter measurements of sample apples, and (3) harvest weight measurements of sample applés and sample tree production. The following table shows the timing of the survey:

$$
\begin{aligned}
& \text { • } \\
& \text { (e:; } \\
& \text { ren } \\
& \text { ur: IIt }
\end{aligned}
$$

Table 1: Calender of Apple Survey 1963-1965

Event	: 1963	:Days After: :Full Bloom:	$\begin{aligned} & 1964 \\ & \text { Date } \end{aligned}$:Days After :Full Bloom	$\begin{aligned} & 1965 \\ & : \text { Date }: 1 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { :Days Aft. } \\ & \text { :Full Bl } \end{aligned}$
Full Bloom	: April 24	0	May 8	0	May 10	0
First Measurement (Forecast Count)	: June 26	63	June 30	53	June 29	50
Second Measurement	Aug . 1	99	July 31	84	July 30	81
Third Measurement	Aug. 29	127	Sept. 2	117	Aug. 31	113
Fourth Measurement	Sept. 27	156	Sept. 25	140	oct. 6	149
Pre-Harvest Count and Measurement	: Oct. 8	167	Oct. 14	159	Oct. 21	164
Harvest Period	: Oct. 10-17	169-176	Oct. 24-25	169-170	$\text { oct. } 26$ 27	$5-169-170$
Post-Harvest Weight	: None	None	Oct. 26	171	oct. 27	170

Tree Section A block of 250 trees of the Red York variety was selected for study. This block was centrally located within the commercial orchard and consisted of four rows of trees. For the count survey a systematic ten percent sample of trees was made from a random start using a serpetine pattern. A twenty-five tree sample was selected in 1963 for the 1963 and 1964 counts, and a different sample of twenty-five trees was taken in 1965. The size growth study was made from a sub-sample of the twerty-five trees. For this study in 1963 and 1964, every other tree was selected and in 1965, every third tree was used.

Count Survey From each of the twen.ty-five sample trees, a count was taken of all apples on a sample limb as of about July 1 and again just before harvest. The sample limbs, termed "Count Limbs," was selected along a random path with probabilities proportionate to the cross sectional area (CSA). Selection was designed to obtain a count limb whose CSA of primary branches five percent of the combined total CSA of primary branches. Measurements of CSA was made with steel tapes especially calibrated to indicate cross sectional area, in square inches, from circumference measurements. Limbs were usually measured about one hand's width above the previous split with care taken to avoid limb swells that would not be representative of the limbs size. The exception in this procedure was in cases where pruning several branches of the next stage on these cases measurements were taken above pruning. The relationship of cross sectional area to limb circumference is based upon the assumption that limbs are fairly circular. This is probably a safe assumption for most apple trees. To prevent tape breakage, small sized branches were measured by comparing their sizes with wooden dowels of known CSA. At each stage of selection, branches were numbered and measured. These measurements, as well as the cumulative measurements, were entered for each branch on the schedule. A number was then selected between one and the cumulative total CSA for all
branches, inclusive, from a table of random of numbers. The branch whose cumulative CSA was equal to or exceeded the random number was selected. If the branch so selected was considerably larger than the desired size, the selection process would contimue out the branch. At each stage, small branches were grouped together into units of about the desired sample size. As a result, no intermediary fruit (fruit along path, but not on terminal branches) was encountered. Eventually, a terminal branch or, group of terminal branches was selected representing five percent of the combined primary branch CSA's. The trees were makjed to show tree number, and a yellow stripe spray painted around the selected tertrinal branch. To faciliate counting, the terminali branch was divided linto up to five sub-branches, called sub-sections, each marked with white plastic tape. During the 1965 season it was found desirable ta further bieak down there sub-sections into numbered and labeled count units containing gentrally no greater than twenty apples.

For counting apples, two man crews were used, equipped with ladders; counting hooks, and clip boards. Each man was to count each sub-section independentlly, and compare results. Any disparities in counts were to be examined and recounts aare made to reconcile the differences. Unfortunately there was not time for adequate timing or to allow reconciling differences. For some limbs, the ladders used wre not tall enough to allow the count of apples on upper branches by feel. 5 Sight counts were resorted to in the July 1 survey in these instances. This sometimes resulted in serious undercounts. In addition, other factors such as missed branches, intertwined branches, and small fruit sizes contributed to inaccurate July 1 counts. These; as well as the lack of checking counts accounted for the large numbers of July 1 counts being smaller than harvest counts on the same branch in each of the three season. At harvest time, all fruit was removed from the count limbs, so that ;accurate counts were obtained of fruit present.

Size Growth Study On each of the twelve sub-sample trees in 1963 and 1964 and from each of the eight sub-sample trees in 1965, a sample limb different from the count limb was selected for tree size measurements of apples. The sample limbs for size growth study, were called "tag limbs". They were selected to represert, approximately five percent of the combined CSA's of the primary branches. In selected the tag limbs, a limb in the same stage as the count limb but other than the count limb was randomly selected with probabilities proportional to CSA. Further stage selection continued if the selected limb was larger than five percent of the combined primary branch CSA's until a terminal branch of the proper size was selected. Hence, except for the rare event on which limb was a primary branch, the tag limb and count limb were from the same primary branch, and often from the same secondary branch. For 1963 and 1964, a systematic sample of 20 apples was selected from the $\mathrm{tag}_{\mathrm{tag}} \mathrm{limb}$, and a sample of 15 in 1965 . Where fewer than

5/ Several sizes of picking ladders are necessary with a 20' ladder being required for the large trees.
these numbers of apr les were found on the tag limb, all such apples were selected for measuring. The apples selected on the tab limbs were labeled with numbered plast.c markers. After experiencing losses of tags due to orchard spraying iuring the 1963 season, improved tags were used in the 1964 and 1965 seasons thich minimized this problem. The apple measurements were made with comeri ially available devices consisting of flexible steel tape loops which, when snuggly fit around an apples circumference, indicated the associated apple diameter in inches to the nearest hundredth. The measurements for each successive survey were recorded on the same form so that any large departures from nomal growth could be detected and inmediately checked. Where the tagged apple could not be located for measuring, this fact was noted on the recording sheet. In addition, any pertinent information was recorded such as bruising by rough handling and confimed measurements that indicated negative growth.

Harvest Veipht Survey Weights of apples at harvest were obtained in three phases. For tas limb apples, these were measured and then removed from the tree at pre-harvest time. For each tree, the removed apnles vere sorted into diameter grouns at $\frac{1 / 4}{4}$ intervals and the counts and total weirht in grams of each category recorded.

Also conducted at the pre-harvest survey time was the counting and weighing of apples on count limbs. Apples were removed from the count limbs and the total weight in points obtained for the count limb of each sample tree. The same twenty five eample trees were used in 1963 and 1964 , but a different twenty-five tree sample was drawn in 1965.

When the actual orchard harvest was conducted, the manager arranged to have the apples for sample trees to be picked into field crates and field crates left under the tree. In 1963 a count of field crates under each sample tree was taker and this converted to pounds using an assumed weirght per field crate of 42 pounds. In 1964 and 1965 , field crates were weighed on portable scales. Tare deductions were made for empty crates based upon observations of empty crate weights.

IV. Observations and Analysis

Count Limb Selection Measurements of the cross sectional area of limbs for each stage of branchinr is shown for the samble limbs in Tables $2 a$ and $2 b$ alonf with expansion factors for PPS Sampling at each stape. Expansion factors were computed as the product of the reciprocal of the probability of selection based on the cumulative CSA to the selected branch for that stage. For illustration, the expansion factor tree nine for 1963 and 1964 was calculated as follows:

$$
\text { Expansion Factor }=\frac{201.4}{28.3} \times \frac{19.1}{9.6}=7.06
$$

Count Survey To provide an estimate of the actual numbers of apples on each sample tree, derivation of estimated harvest counts are shown in Table 3 For most trees, the derived harvest counts were comnuted by dividinf the net
weight of harvested nroduction of the tree by the average harvest weipht per apple for the tree aaing the apoles from the sample limb. In the two cases where net harvest weights were not obtained for trees, expanded counts vere used from count limbs as derived harvest counts and the product of the average harvest weipht per apple and the expanded count was used as an estimate of weight of harvested production. In two other cases, no apples were left on the count limb to be veighed, so an estimate was made of average weirht per apple by using s regression equation of weights of apples harvested for the tree per one inch across sectional of the combined primaries to obtain an averafe weight per apple. A comparison of counts of apples on the sample limbs on July 1 and at nre-harvest alonf with their expansions and the derived harvest counts are shown in Tables $4 a$ and $4 b$. Table shows the July count and harvest data for the three years. Since the derived harvest counts exclude harvest losses, they are not strictiy comparable to the expanded pre-harvest counts. One would expect the difference between expanded forecast counts and pre-harvest counts to represent drops during that period. As previously mentioned, however, inaccuracies in Forecast counts nullified their usefulness for this purpose, and in many cases would seemingly infer a negative drop. Accurate forecast counts vould have given a good idea of fruit drop between July 1 and pee-harvest. The followinp percentages decline in numbers were observed during the three years: Forecast to Forecast to

Pre-Harvest to
Year Pre-Harvest Harvest Marvest (Harvest Loss)

1963	Merative	Negative	8.41
1964	3.65	15.35	12.15
1965	11.45	19.82	9.45

To the extent that forecast counts were low, these indicated percentape declines are underestimates. There may have been a slight offsetting factor, i.e. that fruit knocked off during counting and sizing operations. This is not considered a very large factor, however.

Size Growth Study For the sub-sample of trees for which apple diameter measurements were made periodically, Table 5 shows the number of apples observed for each tree on each survey date.

A comparison of the decline of apples measured during the seasons for 1963 and the latter two years indicates the effectiveness of the improved plastic tag in remaining on the sample anple. Tables $6 a, 6 b$, and 6 c show the average apple diameter for each tree by survey date. This is fiven for all apples measured on the survey date and also for Just those apples remaining at harvest. For 1963, there were many cases in which apples were missed during interim measurements but were found at harvest. For 1963 the averages as shown in Table $6 a$, apples remaining at harvest include only those apples for which a complete series of reports were obtained during the season. For Fach year, the derived harvest counts were used as weights to compute a weiched average. Tables $7 a, T b$, and $7 c$ show the size distribution of apple diameter meesurements by survey dates in tenths of inch intervals, for all anples measured. As one would expect, size distribution starts out with a strong control tendency and flattens out as the sesson progresses.

Tables 8ar ond ac ahow the daily diametex arowth rate for each tree, the number of apples per inch, cross sectional area for both the tree and the count limb, the correlation coefficients between growth rates and apples ner $1^{\prime \prime}$ CSA. Several interesting relationships can be observed. At the beginaing, of the growth season there is a faster growth rate for those apples on trees with a light set, but in the later stares of develapment, the growth rate for these apples sloys down markediy while the apples, on heavily laden trees continue growing at only a somewhat reduced, rate. The change from negative to positive correlation coefficients is striking as the, season reaches the final stages of growth. The apoles per: 1 " CSA mepsure obtained from the count limb appears to be satisfactory measure, of set. This is important since it is the only practical measure available at forecast time. Correlation coefficient between apple diameters on $\mathrm{J}_{\mathrm{J}} \mathrm{luy} 1$ and Augupt 1 survey dates and Pre-Harvest diameters are as follows:

July 1
and Pre-Harvert

Year	and Pre-Harveet 1963
1964	0.6994
1965	0.8667

Aug. 1
and Pre-llarvest

$$
0.9191
$$

$$
0.9413
$$

$$
0.8427
$$

This would sear to indicate that while correlation iṣ high at July 1 , considerable improvement would result in waitine until Aucust 1 to project harvest sizes; "

The variation in the size of apples amons, trees and within trees on July 1 is of interest In deciding hew many apples to measure on each trees. For the purpose of determining the average size of apple for projecting to a harvest weight per apple based on a regression equation (see page .), the variance components derived from the table below indicate the variance is reduced by approximately two-thirds by sampling from three trees rather than one tree per block. For this study $\sigma_{b}^{2}(.0137)$ and $\sigma_{n}^{2}(.0250)$ are approximately equal.

ANOVA Table for Size of Apples Within Block July 1, 1963

Harvest Heipht Surver For apples on tap limbs, after diameters were measured, the apples were classifled by: diameter at intervals of one quarter inch. An average welight for ench dianeter class was then obtained. There was a negative correlation between average welight for a particular size category and apple per inch CSA, which was algnificient at this 5% level. This would tend to conflim that the apoles from trees with light sets of fruit are sweeter, and hence denser than those with heavier sets. Tables $9 a, 9 b$, and $9 c$ shos the distribution into each size category, by tree, and averare weipht per apple for the three years.

Tables 10a, 10b, and 10cshow the calculation of the average weight per apple for each tree, including the numbers of apples weighed on count limbs and their total weight. These average weights were used to derive harvested counts as shown in Table, along with the total weight of tree production which is also shown on Tables, , and

Table shows a comparison of expansions of weights of apples from count limbs at Pre-Harvest time, expansion of tree production weights, and reported orchard production. In order to project orchard production, it is obvious that a sample of twenty-five trees would be insufficient if this had been the purpose of this ttudy. Analysis of the sample standard deviations between production weights per tree, indicate a sample of over 180 would be needed (if the finite correction factor is ignored) to yield a precision of 5% of the mean at the 95% confidence level. While the intent of the study was not to estimate for individual blocks, the variability within blocks is considerable and may be subject to reduction through further study. However, the sample variability for the finite population is evident when one compares the harvested production for the twenty-five trees, column 6, with the production for all 250 trees, column 11. In 1965, the twenty-five trees did not represent the entire block as well as the sample tree used in 1963 and 1964.

A comparison of columns (5) and (6) indicates an unharvested production, or a combination of bias in the count limb procedure and unharvested production of 6-10 percent. Based on harvesting loss experiences with other crops, which are usually average 5-10 percent, the procedure used at harvest time appears to be essentially free of bias.

Projection of Harvest Weight The major purpose of the study was to project harvest yields. Since the weight of apples at harvest time is positively correlated with its July 1 diameter and negatively correlated with the number of apples per one inch cross sectional area, a multiple regression of the two provided some promise. Also to be considered was cubing the July 1 diameter observations since weight is directly related to volumne. A study of the 1965 apples measured that were harvested revealed the following relationships:
(1) $\hat{Y}_{i j}=-0.009252+0.26928284 x_{i j}-0.006387254 v_{j}$
(2) $\hat{Y}_{i j}=0.273430+0.03525292 x_{i j}^{3}-0.00629700 v_{j}$

Where:
$\hat{Y}_{i j}=$ harvest weight of $i^{\text {th }}$ apple on $j^{\text {th }}$ tree.
$\mathrm{X}_{i j}{ }^{i j}=J u l y l$ diameter of $i^{\text {th }}$ apple on $j^{\text {th }}$ tree
v_{j} number of apples per $l^{\prime \prime}$ CSA (Forecast Survey-Count Limb) on j th tree

The regression is as follows:
Harvest Weight per fruit vs. July 1 Diameter and fruit per $l^{\prime \prime}$ CSA Analysis of Variance: Y_{1} vs. X_{1} and X_{2}

| Source | df | SS | MS | F |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Total | 62 | | | |
| Regression on X_{1}, X_{2} | 2 | .518807 | | |
| Regression X_{1} only | 1 | .328705 | .16435 | 51.89 |
| Regression X_{8} only | 1 | .22654 | .22654 | |
| Error $\left(X_{1}, X_{2}\right)$ | 60 | .28302 | .28302 | |

Harvest Weight per fruit vs. July 1 Diameter Cubed and fruit per 1" CSA Analysis of Variance: Y_{1} vs. X_{2} and X_{3}

Source	df	SS	MS	F
Total	62	.518807		
Regression on X_{2}, X_{3}	2	.328798	-164399	51.89
Regression on X_{3} only	1	.23178	.23178	
Regression on X_{2} only	1	.28302	.28302	.003167
Error $\left(X_{2}, X_{3}\right)$	60	.190009		

The weight per fruit is more strongly related to the set per tree (in a negative way) as measured by the fruit per $1^{\prime \prime}$ CSA, but both regression coefficients are siginificantly different from zero.

From these, it can be seen that there is little advantage in using the diameter cubed. A further refinement that shoula be added to this estimating procedure is to change the July 1 diameter measurement to a Full Bloom Date plus a specified number of days. Since in 1965, the July 1 survey took place on June 29, or 50 days after Full Bloom, the comparable survey dates for 1963 and 1964 would have been June 13 and June 27 respectively. By applying daily growth rate ad justment factors to the diameters observed on actual survey dates, (see chart I) one rectroctively converts the observed diameters to a "Bloom plus 50 day" equivalence. In operational conditions, the survey would be timed to take place about the desired time. Adjustments to the exact date size could be made based upon a sub-survey which would indicate the appropriate growth rate for the area and variety in that year. Once the regression equation was applied to the sample apples measurements, a weighed average would be computed to arrive
at the indicated average epple weight at harvest. The expansion of forecast counts less deductions for expected losses until harvest and harvest losses would project the number of apples to be harvested. Apple production, in bushels, would then be the project of projected apple mabers and projected average apple harvest weight divided by weight per bushel.

Then:

$$
\hat{Y}_{j}=\frac{1}{M_{j}} \sum_{1=1}^{M} Y_{i j}
$$

(Projected number apples per tree)
and,

$$
P=\frac{N}{n} \frac{\sum_{j=1}^{n} Z_{j} \hat{Y}_{j}}{\sum_{j=1}^{n} Z_{j}}
$$

(Projected Weight of Applea per tree) :

Size Distribution at Harvest An early season projection of harvest size distri bution would be valuable to the apple industry for marketing plannimg purposes since the fruit is sold on the basis of harvest diameter size. While small apples at Forecast generally remain small apples at harvest, the distribution patterns of apples measured and dated harvest at first glance do not appear to be similar during the three seasons of the projecti. As can be seen in Charts II and III. Using the regression approach mentioned in the prevedus section. using harvest diameters as the $Y_{i j}$ value, gives a method of projecting harvest size distribution. Using 1965 size data again the following equations were computed:

$$
\mathbf{x}_{i j}=1.243248+1.039817 X_{i j}-0.010603 v_{j}
$$

Harvest Diameter per fruit vs. July 1 Diameter and Fruit per I" CSA Analysis of Variance: Y_{1} vs. X_{1} and X_{2}.

Source	df			
Total	62	3.62851		
Regression on X_{1}, X_{2}	2	2.12893	1.06446	42.59
Regression X_{1} only	1	1.84740	1.84740	
Regression X_{2} only	1	1.44782	1.44782	
Error $\left(X_{1}, X_{2}\right)$	60	1.49958	.024993	

In this case, the July 1 diame'uer is the most important single variable as might be expected based on Batjer studies.

Applying the above equation to the July 1 apple diameter measurements for 1964, one would have projected a size distribution as in Chart IV as compared with the final observed. Since the regression equation is based on 1965 data with the projected fruit sizes being from different trees in the 1964 season, similar regression parameters based on scattered trees over a larger geographic area would probably be valid, but question of whether such a relationship may be valid between seasons must be tested. However, a comparison of the projected diameters with actual diameters in Chart IV suggests that the prediction of the harvest size distribution may be practical. In deriving these size distribution charts, the distributions for each sample tree has been weighed by the expanded number of fruit at forecast time or derived numbers of fruit at harvest.

It would appear that a similar approach based upon a multiple regression equation over several years may have merit. It may be desirable to introduce additional variables in such approaches.

VI. Conclusion

Methods for using objective fruit counts and measurements for apples as early as July 1 were realized in the research conducted over the three year period. The basic results are as follows:
(1) Procedures for accurate counting of fruit on sample limbs were developed. The task requires a painstaking detailed counting by small sub-sections of the sample limbs. The need to recount sample limbs a second time and reconcile any large differences is necessary for accurate results. The sub-section counts are helpful for this purpose. Counts by inexperienced crews are not likely to be sufficiently accurate for forecasting purposes unless recounting and reconcilation of differences are resolved through adequate supervision.
(2) The droppage from July 1 to Harvest is fairly stable and measurable using tagged individual fruit.
(3) The repeated measurement of apple diameters starting around July 1 by tagging of indiviudal fruit is feasible and provides a basis for predicting harvest sizes and weights of apples. While care in handing the apples is required to avoid knocking off fruit, this problem is most troublesome as harvest approaches.
(4) Provision for determining the amount of unpicked fruit is necessary. Also, the loss of fruit dropped on the ground and recovered by the grower must be measured to insure that commercial production and biological production can be related.

Virginia Apple Counts Survey
Table 2a 1963-64 Count Limb Selection Random Paths, Cross Sectional Areas, and Expansion Factors

1965 Count Limb Selection Random Paths, Cross Secetional Areas, and Expansion Factors

Derivation of Harvest Counts of Apples, Sample Trees 1963, 1964, 1965

Table 4a
Apple Counts, Expanded Counts, and Derived Harvest Counts, by tree 1963 and 1964

Tree	$\begin{aligned} & : \text { Forecast } \\ & : \text { count } 1 / \\ & \hline \end{aligned}$: Pre-Harvest : Count	$\begin{aligned} & \hline \text { Expanded } \\ & : \text { Forecast } \\ & \text { Count } \\ & \hline \end{aligned}$	$\begin{gathered} \hline \text { Expanded } \\ : \text { Pre-Harvest: } \\ \text { Count } \\ \hline \end{gathered}$: Derived : Harvest count 2/:	Forecast count	Pre- : : Harvest: count :	: Expande : Forecas count	$\begin{aligned} & \text { d: Expanded } \\ & t: \text { Pre-Harvest: } \\ & : \text { count } \end{aligned}$	Derived Harvest count
9	:428/123(130)	127	918	897	2,963	294	296	2,076	2,090	4,173
19	: 82	106	1,436	1,857	2,356	307	308	5,379	5,396	6,038
29	:346/362(354)	370	7,774	8,125	6,121	7	9	154	198	813
39	: 148	348	3,033	7,131	3,419	18	19	369	389	686
49	:355/359(357)	378	7,893	8,358	5,639	64	69	1,415	1,526	2,238
59	98	147	1,475	2,212	4,139	598	553	9,000	8,323	4,977
69	35	34	828	805	1,614	65	74	1,539	1,752	1,230
79	207	226	2,159	2,357	2,867	130	146	1,356	1,523	2,048
89	:261/264(262)	263	4,750	4,768	3,297	448	446	8,122	8,086	5,184
99	: 33	36	635	693	1,395	27.8	264	5,352	5,082	4,615
109	165	198	3,326	3,992	1,760	273	296	5,504	5,967	4,117
119	187	312	2,336	3,897	2,417	966	903	12,065	11,278	9,075
129	157	150	2,277	2,175	4,450	587	484	8,512	7,018	6,899
139	34	70	850	1,750	2,487	298	299	7,450	7,475	5,675
149	123	162	2,734	3,601	2,300	212	243	4,713	5,400	4,284
159	183	215	3,708	4,356	4,265	200	179	4,052	3,627	4,687
169	5	4	10	8	8	274	0	556	0	,
179	146	25	3,678	630	1,280	1	0	25	0	1,980
189	: 213	176	3,787	3,129	7,347	44	38	782	676	3,417
199	290	255	7,285	6,406	2,997	63	64	1,583	1,608	1,228
209	1	0	21	0	414	13	13	- 280	1,280	1,213
219	21	17	644	521	2,380	38	35	1,167	1,073	1,780
229	178	211	3,304	3,916	3,541	51	40	1,947	1,742	1,456
239	132	233	3,350	5,914	-3,555	329	316	8,350	8,020	4,225
249	319	293	5,592	5,136	2,678	366	347	6,416	6,083	4,206
ALL	:		73,803	82,634	75,689			97,162	93,614	82,244

1 Where two counts are shown, no reconciliation was made. Counts in parenthases were expanded.
See Table 3 for derivation of Harmest Counts.

Table 4b
Apple Counts, Expanded Counts, and Derived Harvest Counts, by tree 1965

Tree	$\begin{aligned} & \hline \text { Forecast } \\ & : \text { count } 1 / . \end{aligned}$	Pre-Harvest Count	Expanded Forecast Count	Expanded \vdots Pre-Harvest Count	Derived Harvest Count	
6	$: 16$	17	232	247.	1,853	
16	: $\quad 0$	0	0	0	358	
26	:125/731(128)	100	1,887	1,474	2,021	
36	: 183	149	5,546	3,705	3,696	
46	: 22	24	- 314	279	932	
56	: 8/10(9)	3	312,	, 117	$\therefore \quad 117$	
66	: 74/107(91)	117	1,893:	1,653	305	
76	:159/185(172)	184	5,194	4,324	3,461	
86	:165/182(174)	151	3,667	3,043	3,325	
96	: 18/ 21 (20)	14	- 298	4. 199 -	1,328	
106	:309/336(323)	267	6,260	4,974	3,205	
116	: 20	19	139	132	104	
126	:146/163(155)	154	2,691	2,543	2,413	
136	: 26/ 28 (27)	34	276	355	1,004	
146	: 33/34(34)	22	607	- 393	212	
156	: 83/ 93(86)	78	1,247	935	3,059	
166	: 36/40(30)	19	542	257	842	
176	: 71/ $72(72)$	80	1,398	1,553	550	
186	:126/153(140)	108	2,055	1,620	1,160	
196	:389/405(397)	402 \%	8,145	8,084	5,317	
206	: $47 / 53(50)$	58	1,102	1,204	574	
216	: 2	0	26	0	0	
226	:409/443(426)	307	6,898	4,780	3,210 ${ }^{-}$	
236	:223/228(226)	282	4,995	4,695.	4,392	
246	:400/435(418)	. 536	8,074	9,948	7,717	
ALL	:		63,798	56,494	51,155	

1 Where two counts are shown, no reconciliation was made. Counts in parenthases were expanded. See Table for derivation of Harvest Counts.

Table 4 c
Cross Sectional Areas of Sample Limbs with Associated Counts and Weights of Apples, 1963-1965

1 Where two counts are shown there is nonreconcilation of counts
2/ Varification counts made on $\begin{aligned} & 1 / 15 / 65 \text { by segmenting count limbs into small count units except for trees \# } 26 \text { and } 56 \text { for } \\ & \text { which recounts were made } 7 / 65 \text {. }\end{aligned}$

Table
Number of Apples Measured by Survey Date and Tree, 1963, 1964, 1965

Table 6a

	ALL APPLES MEASURED					APPIES REAMINING AT HARVEST $1 /$					
Tree	June 26	Aug. 1	Aug. 2	Sept.	Harves Oct. 8	June 26	Aug.	Aug. 2	Sept.	Harves Oct. 8	Derived Harvest Count
9	1.60	2.11	2.41	2.65	2.61	1.65	2.15	2.42	2.62	2.64	2963
29	1.47	1.95	2.23	2.40	2.49	1.47	1.95	2.23	2.42	2.48	6121
49	1.40	1.86	2.12	2.38	2.39	1.47	1.90	2.17	2.35	$2 \cdot 38$	5639
69	1.46	1.99	2.33	2.52	2.54	1.47	1.98	2.31	2.49	2.54	1614
89	1.44	1.96	2.17	2.36	2.43	1.43	1.95	2.21	2.39	2.43	3297
109	1.24	1.64	1.91	2.10	2.10	1.26	1.63	1.90	2.07	2.10	1760
129	1.59	2.13	2.42	2.58	2.63	1.61	2.15	2.43	2.69	2.64	4450
149	1.37	1.88	2.18	2.33	2.37	1.38	1.86	2.15	2.32	2.36	2300
169	1.55	2.29	2.73	2.93	3.00	1.56	2.33	2.80	2.96	2.98	8
189	1.61	2.22	2.59	2.78	2.88	1.63	2.26	2.64	2.83	2.88	7347
209	1.27	1.82	2.11	2.28	2.31	1.26	1.79	2.07	2.27	2.31	414
229	1.54	2.04	2.37	2.55	2.62	1.53	2.05	2.37	2.55	2.62	3541
249	1.52	1.96	2.23	2.39	2.52	1.55	2.00	2.30	2.49	2.53	2678
$\Sigma x i=$	19.05	25.85	29.80	32.25	32.89	19.17	26.00	30.00	32.36	32.89	42132
$\overline{\mathrm{x}}$	1.47	1.99	2.29	2.48	$\frac{\text { Simple }}{2.53}$	$\frac{\text { rage }}{1.48}$	2.00	2.31	2.49	$2 \cdot 53$	

1/ Apples for which there were reports each time.

1964--Virginia Apple Counts Survey (Summary)

ALI APPLES MEASURED						APPLES REMAINING AT HARVEST					Derived No. of Apples
Tree	$\text { : June } 30$	$\text { July } 3$	Sept.	Sept.	Harvest Oct. 14	June	$\text { July } 3$	Sept.	Sept.	Harvest Oct. 14	
9	: 1.455	1.968	2.352	2.487	2.521	1.439	1.950	2.331	2.487	2.521	4173
29	: 1.486	2.166	2.592	2.721	2.767	1.507	2.193	2.616	2.744	2.767	813
49	: 1.426	2.002	2.381	2.533	2.569	1.416	1.996	2.378	2.475	2.569	2238
69	: 1.485	1.984	2.360	2.475	2.507	1.482	2.004	2.360	2.472	2.507	1230
89	: 1.416	1.954	2.319	2.436	2.441	1.429	1.972	2.306	2.422	2.441	5184
109	: 1.123	1.634	1.946	2.056	2.080	1.125	1.635	1. 948	2.056	2.080	2117
129	: 1.440	1.934	2.217	2.342	2.388	1.436	1.928	2.088	2.342	2.388	6899
149	: 1.474	2.048	2.363	2.468	2.512	1.473	2.042	2.352	2.471	2.512	4284
169	: 1.156	1.555	1.672	1.691	---	1.154	1.561	1.671	1.691	8	556
189	: 1.558	2.193	2.570	2.725	2.820	1.564	2.215	2.605	2.764	2820	3417
209	: 1.308	1.848	2.156	2.317	2.388	1.363	1.912	2.246	2.380	2.388	213
229	: 1.559	2.206	2.605	2.811	2852	1.554	2.200	2.631	2.804	2.852	456
249	: 1.477	1.999	2.313	2.421	2.462	1.473	1.994	2. 313	2.421	2.462	4206
$\sum \mathrm{xi}=$:18.363	25.491	29.846	31.483	30.307	18.415	5	29.845	31.529	30.307	35786
$\overline{\mathbf{x}}$: 1.413	1.961	2.296	2.422	$\frac{\text { Simy }}{2.526}$	$\begin{aligned} & \text { Avera } \\ & 1.417 \end{aligned}$	1.919	2.296	2.425	2.526	

Weighed Average
$\Sigma \mathrm{fiXi}_{1}=: 51433.07470,764.64582800 .13187,224,25887,696.72851409 .03670319 .36181,875.10887,193.22987,696.728$
(w) $\bar{x}=: 1.44$
1.98
2.33
2.44
2.49
1.98
$2.29 \quad 2.44$
2.49
$\Sigma f i=35,230$
$\Sigma f i=35,230$

Table 6c			1965	rginia	ple Cou	Survey	ummary)				
ALL APPLES MEASURED						APPLES REMATNING AT HARVEST					:Derived :No. of : Apples
Tree	: June	Tuly	Auis.	Oct.	$\begin{aligned} & \text { Harvest } \\ & \text { oct. } 21 \\ & \hline \end{aligned}$	Jun	July	Aug.	Oct.	:Oct.	
26	: 1.478	1.965	2.422	2.706	2.728	1.512	2.019	2.454	2.706	2.728	2021
56	: 1.807	2.337	2.320	2.740	3.030	1.795	2.320	2.740	2.990	3.030	117
86	: 1.562	1.945	2.350	2.527	2.601	1.588	1.989	2.357	2.552	2.601	3325 104
116	: 1.713	2.293	2.717	2.906	2.913	1.698	2.281	2.707 2.751	2.945	2.963	212
146	: 2.684	2.303	2.749	2.971	2.963	1.699	2.259 2.140	2.751 2.625	2.875	2.918	550
176	: 1.549	2.106	2.527	2.734	2.918	1.578	2.140	2.625	2.730	2.770	574
206	: 1.674	2.161	2.582	2.730	2.770	1.613	2.080	2.529 2.308	2.730 2.514	2.563	4392
236	: 1.533	1.931	2.271	2.468	2.563	1.539	1.946	2.308	2.514 22.218	22.486	11295
「xi=	: 13.000	17.041	19.938		22.486	13.022	17.034	20.47	22.218		1129
					mple Av	ge 628			2.777	2.811	
$\underline{x}=$: 1.625	2.130	2.492	2.723	2.811	1.628	2.129	2.559	2.777	2.811	

Weighed Average by derived apple mumber per tree
इfixi $=17,473.02922,318.19326,691.55829,033.93829898 .80717635 .69722,599.14827,014.01129,420.37829,898.807$

| $\frac{\Sigma f x}{\Sigma f}$ | $=:$ | 1.55 | 1.98 | 2.36 | 2.5 | 2.65 | 1.56 | 2.00 | 2.39 | 2.60 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | 2.65

Table 7a
Size Distribution of Apple Diameters for each Survey Data $\sqrt{/}$

$\begin{gathered} \text { Diameter } \\ \text { Size } \\ \hline \end{gathered}$:	June 26		$\text { Aug. } 1$	$\begin{gathered} 1 \\ \vdots \\ \vdots \\ \hline \end{gathered}$	Aug. 29	\qquad	Sept. 27	: \vdots	$\begin{gathered} \text { Pre-Harvest } \\ \text { Oct. } 8 \\ \hline \end{gathered}$
	:									
0.90-0.99	:									
1.00-1.09	:	2								
1.10-1.19	:	11								
1.20-1.29	:	31								
1.30-1.39	:	43		2						
1.40-1.49	:	39		4						
1.50-1.59	:	70		10		3			\because	
1.60-1.69	:	43		7		3		3	8	
1.70-1.79	:	13		20		6		0	\bigcirc	2
1.80-1.89	:	3		30		7		7		4
1.90-1.99	:			35		12		5		3
2.00-2.09	:			36		22		13	e	8
2.10-2.19	:			42		16		13		19
2.20-2.29	:			15		23 26		21 14		19
2.30-2.39	:			15		26		14		12
2.40-2.49	:			3		28		17 21	\%	12
2.50-2.59	:					33		21		21
2.60-2.69	:					7		29 26		25
4.70-2.79	:					7		26		25
2.80-2.89	:					2		9		15
2.90-2.99	:					1		7		10
3.00-3.09	:							1		3
3.10-3.19	:							1		1
3.20-3.29	:									1
3.30-3.39	:									
3.40-3.49	:			\cdots		\cdots				
Total Apples	:	255		219		196		180	\%	164
-	:					-				

1/ All apples measured

Table 7b
Size Distribution of Apple Diameter for each Survey Data 1/

Table 7c
Size Distribution of Diameters for each Survey Date

Apples Harvested per 1" CSA for each tree

1/ Total derived apple prod. number divided by cumulative primaries on each tree.
Pre-Harvest count of apples divided by CSA for the sample limb for each tree.

Table 8b
Apples Harvested per 1" CSA for each tree

1 Total derived apple prod. numbers divided by cumulative primaries on each tree.
2) Pre-Harvest count of apples divided by CSA for the sample limb for each tree.

Table $8 c$
Apples Harvested per l" CSA for each tree

1/ Total derived apple prod. numbers divided by curulative primaries on each tree.
Pre-Harvest count of apples divided by CSA for the sample tree for each tree.

Table
1963 Average Weight Per Apple (T g Limb) by Diameter Class by Tree (1 gm. $=.0022046 \mathrm{lbs}$.)

Tree	Less_2.00 : $2.00-2.24$				2	25-2.49:	2.50	-2.74	2.75-2.99: $3.00+$				All Classes		
	No. of	:Weight : per	$\begin{aligned} & \text { : No. } \\ & : \text { of } \end{aligned}$:Weight : per	$\begin{aligned} & \text { No } \\ & : \text { of } \end{aligned}$:Weight: : per	No. of	:Weight : per	$\begin{array}{ll} : & \text { No. } \\ : & \text { of } \end{array}$:Weight : per	$\begin{array}{ll} : ~ N o \\ : & \text { of } \end{array}$	o. :Weight f : per	$\begin{aligned} & \text { No. } \\ & : \quad \text { of } \end{aligned}$:Weight : per	
"	: 0		3	0.1396	0		5	0.2707	3	0.3836	1	0.4123	-- 12	0.2780	
- 29	: 0		1	0.1543	3	0.1874	5	0.2452	1	0.3638	0		10	0.2306	
49	: 1	0.0904	0		4	0.1775	5%	0.2469	1	0.2888	0		11	0.2112	
69	: 2	0.9015	0		4	0.2143	6	0.2859	5	0.3457	0		17	0.2637	
89	: 1	0.1190	4	0.1451	2	0.1918	7	0.2588	${ }^{\circ}$	0.2976	0	\cdots	- 16	0.2180	
109	3	0.0910	6	0.1550	4	0.1885	0		0		0		13	0.1506	
129	0		1	0.1301	2	0.1786	7	0.2758	4	0.3289	0		14	0.2668	\cdots
149	3	0.1074	3	0.1404	4	0.2165	4	0.2888	2	0.3395	0		16	0.2152	-
169	0		0		0		0		2	0.3649	2	0.4431	$\therefore 4$	0.4039	
189	0		0		0			0.2961	10	0.3635	2	0.5082	15	0.3693	A5
209	1	0.0992	σ		5	0.2059	2	0.2458	0		0		8	0.2026	
229	0		1	0.1367	4	0.1900		0.2507	6	0.3120	0		18.	0.2513	
249	2	0.0772	3	0.1396	7	0.1920	9	0.2546	1	0.3241	0		22	0.2050	
	:														
Total	13	0.0955	22	0.1451	39	0.1955	60.	0.2639	37	0.3428	5	0.4630	176	0.2436	

Table 9b
1964 Average Weight per Apple (Tag Limb) by Diameter Class by Tree (1 gm. $=.0022046$ lbs.)

1/ No apples leet on tree; probably won't be harvested.

Table 9c
1965 Average Weight Per Apple (Tag Limb) by Diameter Class by Tree (1 gm. $=.0022046 \mathrm{lbs}$.

Table 10a
Calculation of Weighed Average Harvest Weight Per Apple, by tree, 1963

Tree	:Cumulativ $: \quad \text { CSA }$	Harvest Per Tre	: Wt. of : apples :per 1"CS	o. of ples eighe	Total Wt of apple	$\begin{aligned} & \text { :Av. Wt } \\ & : \text { per } \\ & \text { : apples } \end{aligned}$	pl	app	Av. Wt per app	Weighed (Weight apple
	$:(\text { in })^{2}$	(lbs.)	tree(lb		(2bs.)	(1bs				
9	: 201.40	798	3.962	127	34.1	0.2685	12	$3 \cdot 3$	0.2780	0.2693
19	: 254.10	840	3.306	106	37.8	0.3566				0.3566
29	: 220.50	1218	5.524	370	$73 \cdot 3$	0.1989	10	$2 \cdot 3$	0.2306	01990
39	: 139.50	504	3.613	348	51.3	0.1474				0.1474
49	: 268.70	1386	5.158	378	$93 \cdot 3$	0.2468	11	2.3	0.2112	0.2458
59	: 205.60	1050	5.107	247	37.3	0.2537				0.2537
69	: 62.90	462	7.345	34	10.1	0.2971	17.	4.5	0.2637	0.2863
79	: 117.10	756	6.456	226	59.6	0.2537				0.2637
89	: 124.00	840	6.774	263	67.6	0.2570	16	$3 \cdot 5$	0.2180	0.2548
99	: 152.20	252	1.656	36	6.5	0.1806				0.1806
109	: 154.80	420	2.713	198	48.4	0.2444	13	1.9	0.1506	0.2386
119	: 222.80	1008	4.524	312	130.1	0.4160				0.4170
129	: 179.50	1344	7.487	150	45.8	0.3053	14	$3 \cdot 7$	0.2668	0.3020
139	: 214.00	714	3.336	70	20.1	0.2871				0.2871
149	: 202.20	714	3.531	162	51.8	0.3198	16	$3 \cdot 5$	0.2152	0.3105
159	: 194.50	966	4.967	215	48.7	0.2265				0.2265
169	: 13.20	0	0.000	4	1.6	0.4000	4	1.6	0.4039	0.4017
179	: 108.30	630	5.817	25	12.3	0.4920				0.4920
189	: 257.80	1806	7.005	176	41.4	0.2352	15	5.6	0.3693	0.2458
199	: 251.20	798	3.177	255	67.9	0.2663				0.2063
209	: 141.60	84	0.593	0	0	---	8	1.6	0.2028	0.2028
219	: 101.20	630	6.225	17	4.5	0.2647				0.2647
229	: 113.60	840	7.394	211	49.8	0.2360	18	4.5	0.2513	0.2372
239	: 192.50	882	4.582	233	57.8	02481				0.2481
249	: 148.20	756	5.101	293	84.4	0.2881	22	4.5	0.2050	0.2823

Table
10b
Calculation of Weighed Average Harvest Weight Per Apple, by tree, 1964

If Derived through regression analysis of the (wt.) average wt. per apple (ct. and tag) on wt. of apples per $1^{\text {tr }}$ CSA.

Table 10c
Calculation of Weighed Average Harvest Weight Per Apple, by tree, 1965

Tree	:Cumulative : CSA	:Harvest per tree	$\begin{aligned} & \text { : Wt. of } \\ & \text { :apples } \\ & : 1^{\prime \prime} \mathrm{CS} \end{aligned}$	No. of apples weighe	Total of apple	: Av. Wt :per appl		otal of app	Av. W	Weighed Average (Weight per apple)
	$:(\operatorname{in})^{2}$	(lbs.)	tree (1b		(lbs.			(lbs.)		(Ct. \& Tag Limb)
6	: 192.70	599.50	3.111	17	5.5	0.3235				0.3235
16	: 154.10	137.00	0.889	0	0.0					2) 0.3642
26	: 123.50	580.25	4.698	100	28.6	0.2860	8	2.4	0.3009	0.2871
36	: 157.00	734.34	4.677	149	29.6	0.1987				0.1987
46	: 67.00	349.50	5.216	24	9.0	0.3750				0.3750
56	: 146.50	0	0.000	3	1.5	0.5000	2	0.9	0.4597	0.4839
66	: 106.00	94.00	0.887	117	36.1	0.3025				0.3085
76	: 307.30	1280.75	4.168	184	68.1	0.3701				0.3701
86	: 256.40	1038.75	4.051	151	47.6	0.3152	9	2.4	0.2653	0.3124
96	: 180.10	388.98	2.160	14	4.1	0.2929				0.2929
106	: 202.10	952.00	4.711	267	79.3	0.2970				0.2970
116	: 22.80	46.50	2.039	19	8.8	0.4632	9	$3 \cdot 7$	0.4140	0.4474
126	: 228.00	857.00	3.759	154	54.7	0.3552				0.3552
136	: 69.00	369.00	5.348	34	12.5	0.3676				0.3676
146	: 143.50	79.75	0.556	22	8.1	0.3682	8	3.2	0.3977	0.3761
156	: 257.70	1039.00	4.032	78	26.5	0.3397				0.3391
166	: 162.00	345.76	2.134	19	7.8	0.4105				0.4105
176	: 141.40	185.25	1.310	80	26.5	0.3312	6	2.5	0.4156	0.3371
186	: 86.50	434.00	5.017	108	40.4	0.3741				0.3741
196	: 192.10	1219.75	6.350	402	92.2	0.2294				0.2294
206	: 51.20	176.75	3.452	58	17.7	0.3052	7	$2 \cdot 3$	0.3310	0.3080
216	: 88.70	0	0.000	0	0	----				2/ --.-
226	: 138.60	600.25	4.331	307	57.4	0.1870				0.1870
236	: 126.50	1283.25	5.927	282	83.0	0.2943	14	$3 \cdot 5$	0.2493	0.2922
246	: 287.60	2120.50	7.373	$\begin{gathered} 536 \\ \Sigma f 1=715 \end{gathered}$	147.3	$\begin{gathered} 0.2748 \\ E f i=63 \\ \hline \end{gathered}$				0.2748

1/ Derived from a regression of average wt. per apple (ct. and tag limb) on weight of apples per l" CSA (tree).

Table 11
Comparison of Expansions of Count Limb Weights, Tree Production Weights, and Actual Production, 1963, 1964, 1965

Year	: No. of : trees : weighed \vdots \vdots	```Expanded weights from count limbs (pounds)```	: Average : weight : per : tree : (pounds) :	: Harvest : weight : for : sample : trees :(pounds)	: Orchard :Prod. from :count limb : weights : (2) \times Ten : (pounds) :	: Orchard :Prod. from : Harvested : tree : weights : (4) x Ten :(pounds)	: Orchard :Prod. from :Boxes :Picked at :commercial : Harvest : (Boxes)	:Harvest of drops (Baxes)	: Total :Orchard : Prod. : (Baces) : :	: Picked : prod. : converted : to lbs. : 43.22 :(pounds)	: Total : prod. :converted :to lbs. : 43.22 : (pounds)
	: (1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(1i)
1963	: 25	-21,065.288	842.612	19,701	210,653	197,010	4,287	0	4,287	185,284	185,284
1964	: 25	21,368.070	854.723	19,146	213,681	191,460	3,920	504	4,424	169,422	191,205
1965	: 25	16,065.385	642.615	14,968	160,654	149,680	4,573	0	4,573	197,645	197,645

Chart I: Increase in Apple Diameters by Days After Full Bloom

Chart III: Percentage Size Distribution at Harvest, 1963, 1964, 1965

Chart IV: 1964 Projection of Apple Diameters From July 1 Diameter Measurements and Fruit per 1 " CSA Compared with

[^0]: $1 /$ "A Study of the Relationship Between The Amount of Bloom and Yield of Apples", R. P. Langley, Canadian Journal of Plant Science, 40:52-57

